

Grade 3 Math IEP Goal Bank (2 per Domain, Detailed SMART Format)

1. Operations & Algebraic Thinking (Multiplication & Division)

Goal A (By //____):

Given arrays, equal groups, and number sentences, the student will fluently multiply within 50 using strategies such as repeated addition and skip counting with **80% accuracy across 3 consecutive trials**, as measured by classroom assessments.

 CCSS Alignment: 3.OA.A.1, 3.OA.C.7

Objectives:

1. By __/____, the student will represent multiplication facts within 25 using arrays with **80% accuracy**.
2. By __/____, the student will skip count by 2s, 5s, and 10s to solve multiplication problems with **80% accuracy**.
3. By __/____, the student will solve multiplication equations within 50 with **75% accuracy**.

Goal B (By //____):

Given manipulatives, visuals, and word problems, the student will fluently divide within 50 using strategies such as repeated subtraction and equal grouping with **80% accuracy across 3 consecutive trials**, as measured by teacher-created probes.

 CCSS Alignment: 3.OA.A.2, 3.OA.C.7

Objectives:

1. By __/____, the student will solve division problems within 20 using manipulatives with **80% accuracy**.
2. By __/____, the student will represent division with equal groups using visuals with **80% accuracy**.
3. By __/____, the student will solve division equations within 50 with **75% accuracy**.

2. Number & Operations in Base Ten (Place Value to 1,000)

Goal A (By //____):

Given base-ten blocks and visuals, the student will represent, compare, and order numbers up to 1,000 with **80% accuracy across 3 consecutive trials**, as measured by classroom assessments.

 CCSS Alignment: 3.NBT.A.1

Objectives:

1. By __/____, the student will round numbers to the nearest 10 with **80% accuracy**.
2. By __/____, the student will round numbers to the nearest 100 with **75% accuracy**.
3. By __/____, the student will compare numbers up to 1,000 using <, >, and = with **80% accuracy**.

Goal B (By //____):

Given multi-digit numbers, the student will fluently add and subtract within 1,000 using place value strategies and algorithms with **80% accuracy across 3 consecutive trials**, as measured by teacher-created assessments.

 CCSS Alignment: 3.NBT.A.2

Objectives:

1. By __/____, the student will add two-digit numbers using base-ten blocks with **80% accuracy**.
2. By __/____, the student will subtract two-digit numbers with regrouping using visuals with **75% accuracy**.
3. By __/____, the student will fluently add and subtract three-digit numbers with **80% accuracy**.

3. Number & Operations – Fractions

Goal A (By //____):

Given fraction models and number lines, the student will identify, represent, and compare fractions with denominators 2, 3, 4, 6, and 8 with **80% accuracy across 3 consecutive trials**, as measured by teacher-created assessments.

 CCSS Alignment: 3.NF.A.1, 3.NF.A.3**Objectives:**

1. By __/____, the student will identify unit fractions ($\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$) with **80% accuracy**.
2. By __/____, the student will represent fractions on number lines with **75% accuracy**.
3. By __/____, the student will compare fractions with like denominators with **80% accuracy**.

Goal B (By //____):

Given fraction models, the student will demonstrate understanding of equivalent fractions with denominators 2, 4, and 8 with **80% accuracy across 3 consecutive trials**, as measured by classroom assessments.

 CCSS Alignment: 3.NF.A.3**Objectives:**

1. By __/____, the student will generate equivalent fractions using visual models with **75% accuracy**.
2. By __/____, the student will identify equivalent fractions (e.g., $\frac{1}{2} = 2/4$) with **80% accuracy**.
3. By __/____, the student will explain why two fractions are equivalent using models with **75% accuracy**.

4. Measurement & Data (Time, Money, Graphs, Area/Perimeter)

Goal A (By //____):

Given analog and digital clocks, the student will tell and write time to the nearest minute and solve elapsed time problems with **80% accuracy across 3 consecutive opportunities**, as measured by teacher records.

 CCSS Alignment: 3.MD.A.1

Objectives:

1. By __/____, the student will tell and write time to the nearest 5 minutes with **80% accuracy**.
2. By __/____, the student will tell and write time to the nearest minute with **75% accuracy**.
3. By __/____, the student will solve elapsed time problems within 1 hour with **80% accuracy**.

Goal B (By //____):

Given real-life objects and visuals, the student will measure and calculate area and perimeter of rectangles with **80% accuracy across 3 consecutive trials**, as measured by classroom assessments.

 CCSS Alignment: 3.MD.C.5, 3.MD.C.7

Objectives:

1. By __/____, the student will measure the sides of rectangles with **80% accuracy**.
2. By __/____, the student will calculate perimeter of rectangles using repeated addition with **75% accuracy**.
3. By __/____, the student will calculate area of rectangles by counting unit squares with **80% accuracy**.

5. Geometry

Goal A (By //____):

Given visuals and manipulatives, the student will classify and describe quadrilaterals (squares, rectangles, rhombuses, trapezoids) by their attributes with **80% accuracy across 3 consecutive opportunities**, as measured by teacher records.

 CCSS Alignment: 3.G.A.1

Objectives:

1. By __/____, the student will identify quadrilaterals with **80% accuracy**.
2. By __/____, the student will describe attributes (sides, angles) with **75% accuracy**.
3. By __/____, the student will classify quadrilaterals into categories with **80% accuracy**.

Goal B (By //____):

Given shapes and manipulatives, the student will partition shapes into equal parts and express the parts as unit fractions with **80% accuracy across 3 consecutive trials**, as measured by classroom assessments.

 CCSS Alignment: 3.G.A.2

Objectives:

1. By __/____, the student will partition shapes into halves and fourths with **80% accuracy**.
2. By __/____, the student will partition shapes into thirds and eighths with **75% accuracy**.
3. By __/____, the student will express parts as fractions with **80% accuracy**.